St Anne's C of E Primary School Curriculum Plan

Subject: Maths

Year:5

Term: Autumn

Unit: Number and place value

Vocabulary	Knowledge	Understanding	Skills
	Children will know (that)	Children will understand (that)	Children will be able to
Millions Factor pair - a pair of numbers multiplied together form another number called their product. Powers of $\mathbf{1 0}$ - A power of 10 is the number 10 multiplied by itself a number of times. \geq - Greater than or equal to \leq - Less than or equal to \approx - Approximately Divisibility - can be divided evenly without leaving a remainder. Square number - a number that results from multiplying an integer	- Roman numerals up to 1000 - which place value column to look at when round numbers to the nearest 10, 100, 1000 and 10000 - to focus on the column with the highest place value when comparing numbers - to include the zero when counting up or back through zero Stem Sentences Ten one thousands make ten thousand. One hundred hundreds make ten thousand.	- what is happening in the place value columns when adding 10, 100 and 1000 - what is the same and what is different about our number system and the Roman numeral system - which two numbers a given number lies between when rounding. - the convention of rounding up if numbers are exactly halfway - when rounding is valuable, e.g. populations of countries or when packing 53 items into boxes of 10 you need 6 boxes - negative numbers in context, such as temperature	- Count forward and back in steps of powers of 10 for any given number up to 1,000,000 - Interpret negative numbers in context - Count forwards and backwards with positive and negative whole numbers, including through zero - Read, write, order and compare numbers up to 1,000,000 and determine the value of each digit - Use concrete materials and pictorial representations when representing numbers up to 1,000,000 - Round any number up to 1,000,000 to the nearest $10,100,1000,10000$ and 100 000

by itself which can be represented
in the shape of a square.

Prime number - a number that has exactly two factors. It can only be divided evenly by itself and one.

One hundred one thousands make one hundred thousand.
is less than \qquad ,so
thousand is less than \qquad
thousand
Negative numbers are less than zero.

Negative numbers are below zero.
Positive numbers are greater than zero.

Positive numbers are above zero.
For both negative and positive numbers, the larger the value of the number, the further it is away from zero.

- Read Roman numerals to 1000 (M) and recognise years written in Roman numerals
- Recognise square numbers and cube numbers

St Anne's C of E Primary School Curriculum Plan

Subject: Maths	Year: 5		Term: Autumn
	Unit: A	utumn	20
Vocabulary	Knowledge	Understanding	Skills
	Children will know (that)	Children will understand (that)	Children will be able to
Addition Add, more, and, make, sum, total, altogether Double Near double Half, halve One more, two more... ten more Addends - the numbers added together to make the sum Subtraction	- how to use place value to line up numbers with more than 4 digits accurately - when an exchange is and isn't needed - how to round numbers in order to estimate - the most appropriate number to round to, e.g. the nearest 10 , 100 or 1000 - that addition can be done in any order but subtraction cannot Stem Sentences	- '0' as a place holder	- use manipulatives and pictorial representations to demonstrate how to add and subtract - add and subtract increasingly larger numbers mentally - use formal written methods to add and subtract numbers greater than 4-digits - use rounding to estimate and check answers - solve addition and subtraction muti-step problems

St Anne's C of E Primary School Curriculum Plans

Take away, minus, fewer, less, difference between

If one addend is increased by an amount and the other addend is decreased by the same amount, the sum remains the same.
One less, two less... ten less

Minuend - a quantity or number
from which another is to be subtracted

Subtrahend - a quantity or number to be subtracted from another.

Equals
Is equal to, is the same as

Number bonds

Number pair
Number facts
Part, part, whole
Partition

Recombine

Missing number
Tens boundary / Hundreds boundary

Commutative - involving the condition that a group of quantities connected by operators gives the same result whatever the order of
the quantities involved, e.g. $a \times b=b \times a$.

Approximate - something is almost, but not completely, accurate or exact; roughly

St Anne's C of E Primary School Curriculum Plan

Subject: Maths

Year: 5
Term: Autumn and Spring

Subject: Maths	Year: 5		m: Autumn and Spring
S	Unit: Multiplication and division		
Vocabulary	Knowledge	Understanding	Skills
	Children will know (that)	Children will understand (that)	Children will be able to
Multiplication Multiply Multiplied by Groups of Times Repeated addition Multiple - The result of multiplying a number by an integer (not by a fraction).	- the commutative law can be applied when multiplying three or more numbers. - 1 is a factor of all positive integers. - 1 is not a prime number (it only has one factor.) - 2 is the only even prime number. - the notation for squared is ${ }^{2}$. - the squared numbers up to 12×12. - the notation for cubed is ${ }^{3}$. - the number which is left over when dividing is the remainder.	- the relationship between multiplication and division. - the inverse relationship between factors and multiples. - a multiple of a number is the product of the number and another whole number. - some numbers only have two factors (themselves and one) and these numbers are known as prime numbers. - squared numbers are derived from multiplying a number by itself. - cubed numbers are derived by multiplying a number by itself three times e.g. $6 \times 6 \times 6$	- have automatic recall of multiplication and division facts within the times tables. - use systematic methods to find all the factors of a positive integer. - use concrete and pictorial representations to build multiples of numbers. - find common factors of two numbers. - recall prime numbers up to 19. - establish whether a number up to 100 is a prime number. - show squared numbers using concrete and pictorial representations.

St Anne's C of E Primary School Curriculum Plans

Common multiple - A multiple

 that is common to two or more numbers.Factor - Numbers we can multiply together to get another number.

Common factor - When we find the factors of two or more numbers, and then find some factors are the same ("common") then they are the "common factors".

Multiplicand - The number to be multiplied

Multiplier - The number by which the multiplicand is multiplied by

Product - The result of a multiplication

Stem Sentences

"A multiple of a given number is the product of the given number and any whole number."
"A factor of a given number is a whole number that the given number can be divided by without giving a remainder."
" 21 is a multiple of 3.3 is a factor of 21 ."
" 21 is a multiple of 3 , so...

- 2,100 is a multiple of $300^{\prime \prime}$
- 2,100 is a multiple of $3^{\prime \prime}$
"2 times 4 ones is equal to 8 ones: write 8 in the ones column."
" 2 times 3 tens = 6 tens: write 6 in the tens column."
" 8 tens divided by 4 is equal to 2 tens: write 2 in the tens column."
- what is happening in each step of the long multiplication algorithm.
- the role of the zero (place holder) when using the long multiplication algorithm.
- the short division method by using place value counters to partition a number and then group.
- multiply four-digit numbers by a single-digit number using a short multiplication algorithm.
- use partitioning to multiply up to 4-digi numbers by a 2-digit number.
- use long multiplication to multiply up to 4-digit numbers by a 2-digit number or a 3-digit number by a 2 -digi number.

Commutative law - The Law that says you can swap numbers around and still get the same answer when you add or when you multiply.

Distributive law - multiplying a number by a group of numbers added together is the same as doing each multiplication separately.

Prime number - A number that is
only divisible by itself and 1 to leave a whole number.

Composite number - A whole

 number that can be made by multiplying other whole numbers.Square number - the number we get after multiplying an integer (not a fraction) by itself.

Cubed number - The whole

number is used three times, just
like the sides of a cube.

St Anne's C of E Primary School Curriculum Plan

Subject: Maths

Year: 5
Term: Autumn and Spring

Unit: Fractions

Vocabulary
Knowledge
Understanding
Skills

	Children will know (that)	Children will understand (that)	Children will be able to
fraction unit fraction - a fraction with a numerator of 1 Non-unit fraction - a fraction where the numerator is greater than or equal to the denominator (equal to or greater than one whole) Proper fraction - a fraction where the numerator is smaller than the denominator (less than one whole) improper fraction - a fraction where the numerator is larger than the denominator	- how many equal parts make a whole. - when the denominator increases, the fraction is getting smaller. - when adding or subtracting fractions with the same denominator, the denominator remains the same. - multiplying can be written as repeated addition. - when multiplying a fraction by a whole number, the denominator remains the same. - - of \qquad is the same as $-x$ \qquad .	- how multiplication and division are related to finding equivalent fractions. - how to use multiplication and division to convert mixed numbers into improper fractions and vice versa. - if fractions are increasing or decreasing in a sequence. - how to find the intervals between fractions on a number line. - how to use multiples to find a common denominator. - how to use common numerators to compare and order fractions. - how to find a common denominator between two	- use concrete and pictorial representations to show equivalent fractions. - use the abstract method to find equivalent fractions. - represent mixed numbers and improper fractions using bar models and other pictorial representations. - place fractions and mixed numbers on a number line. - count up and down in given fractions. - find missing fractions in a sequence. - compare and order fractions where the denominators are multiples of the same number.

St Anne's C of E Primary School Curriculum Plans

equivalent fraction - equal in

value
mixed number - a whole number and a fraction combined into one number

numerator,

common numerator - when two or more fractions have the same numerator

denominator

common denominator - when two or more fractions have the same denominator
equal part
equal grouping
equal sharing
parts of a whole
half, two halves
one of two equal parts
quarter, two quarters, three quarters
one of four equal parts
one third, two thirds
one of three equal parts

Stem Sentences

The whole is divided into 4 equal parts and 1 of those parts is shaded.

The whole is divided into 12 equal parts and 3 of those parts are shaded.

To find $\frac{1}{5}$ of 15 , we divide 15 into 5 equal parts. 15 divided by 5 is equal to 3 , so $\frac{1}{5}$ of 15 is equal to 3 .

Three-fifths is equal to 3 one-fifths. To find 3 one-fifths of 40 , first find one-fifth of 40 by dividing by 5, and then multiply by 3 .
$\frac{1}{4}$ and $\frac{3}{12}$ are equivalent because 1 is the same portion of 4 as 3 is of 12 .
fractions, when one of the fractions has the common denominator in order to add or subtract fractions with different denominators.

- how partitioning into whole and parts is helpful when adding and subtracting mixed numbers.
- the concept of commutativity when multiplying fractions by whole numbers.
- add and subtract mixed numbers.
- use concrete and pictorial representations to multiply fractions by whole numbers.
- multiply mixed numbers by a whole number.
sixths, sevenths, eighths, tenths, hundredths,
thousandths...

