Unit: Multiplication and division

Voca	Knowledge	Understanding	Skills
	Children will know (that)	Children will understand (that)	Children will be able to
Multiplication Multiply Multiplied by Groups of Times Repeated addition Multiple - The result of multiplying a number by an integer (not by a fraction). Common multiple - A multiple that is common to two or more numbers. Factor - Numbers we can multiply together to get another number. Common factor - When we find the factors of two or more numbers, and then find some	- the commutative law can be applied when multiplying three or more numbers. - 1 is a factor of all positive integers. - 1 is not a prime number (it only has one factor.) - 2 is the only even prime number. - the notation for squared is ${ }^{2}$. - the squared numbers up to 12×12. - the notation for cubed is ${ }^{3}$. - the number which is left over when dividing is the remainder. Stem Sentences "A multiple of a given number is the product of the given number and any whole number."	- the relationship between multiplication and division. - the inverse relationship between factors and multiples. - a multiple of a number is the product of the number and another whole number. - some numbers only have two factors (themselves and one) and these numbers are known as prime numbers. - squared numbers are derived from multiplying a number by itself. - cubed numbers are derived by multiplying a number by itself three times e.g. $6 \times 6 \times 6$ - what is happening in each step of the long multiplication algorithm.	- have automatic recall of multiplication and division facts within the times tables. - use systematic methods to find all the factors of a positive integer. - use concrete and pictorial representations to build multiples of numbers. - find common factors of two numbers. - recall prime numbers up to 19. - establish whether a number up to 100 is a prime number. - show squared numbers using concrete and pictorial representations. - multiply four-digit numbers by a single-digit number using a short multiplication algorithm.

St Anne's C of E Primary School Curriculum Plans
factors are the same ("common") then they are the "common factors".

Multiplicand - The number to be multiplied

Multiplier - The number by which the multiplicand is multiplied by

Product - The result of a multiplication
Multiplication:

Division

Dividing
Divide
Divided by
Divided into
Grouping
Sharing
Shared equally
Left over

Remainder

Equal groups of
Dividend - The amount that you want to divide up.

Divisor - The number we divide by.

Quotient - The answer after we divide one number by another.
dividend \div divisor $=$ quotient.
"A factor of a given number is a whole number that the given number can be divided by without giving a remainder."
" 21 is a multiple of 3.3 is a factor of 21 ."
"21 is a multiple of 3 , so...

- 2,100 is a multiple of $300^{\prime \prime}$
- 2,100 is a multiple of $3^{\prime \prime}$
" 2 times 4 ones is equal to 8 ones: write 8 in the ones column."
" 2 times 3 tens $=6$ tens: write 6 in the tens column."
" 8 tens divided by 4 is equal to 2 tens: write 2 in the tens column." " 4 ones divided by 4 is equal to 1 one: write 1 in the ones column."
- the role of the zero (place holder) when using the long multiplication algorithm.
- the short division method by using place value counters to partition a number and then group.
- use partitioning to multiply up to 4-digi numbers by a 2-digit number.
- use long multiplication to multiply up to 4-digit numbers by a 2 -digit number or a 3-digit number by a 2-digi number.

St Anne's C of E Primary School Curriculum Plans

Commutative law - The Law that

 says you can swap numbers around and still get the same answer when you add or when you multiply.Distributive law - multiplying a number by a group of numbers added together is the same as doing each multiplication separately.

Prime number - A number that is only divisible by itself and 1 to leave a whole number.

Composite number - A whole

 number that can be made by multiplying other whole numbers.Square number - the number we get after multiplying an integer (not a fraction) by itself.

Cubed number - The whole
number is used three times, just
like the sides of a cube.

St Anne's C of E Primary School Curriculum Plan

Subject: Maths

Year: 5
Term: Autumn and Spring

Unit: Fractions

Vocabulary
Knowledge
Understanding
Skills

	Children will know (that)	Children will understand (that)	Children will be able to
fraction unit fraction - a fraction with a numerator of 1 Non-unit fraction - a fraction where the numerator is greater than or equal to the denominator (equal to or greater than one whole) Proper fraction - a fraction where the numerator is smaller than the denominator (less than one whole) improper fraction - a fraction where the numerator is larger than the denominator	- how many equal parts make a whole. - when the denominator increases, the fraction is getting smaller. - when adding or subtracting fractions with the same denominator, the denominator remains the same. - multiplying can be written as repeated addition. - when multiplying a fraction by a whole number, the denominator remains the same. - - of \qquad is the same as $-x$ \qquad .	- how multiplication and division are related to finding equivalent fractions. - how to use multiplication and division to convert mixed numbers into improper fractions and vice versa. - if fractions are increasing or decreasing in a sequence. - how to find the intervals between fractions on a number line. - how to use multiples to find a common denominator. - how to use common numerators to compare and order fractions. - how to find a common denominator between two	- use concrete and pictorial representations to show equivalent fractions. - use the abstract method to find equivalent fractions. - represent mixed numbers and improper fractions using bar models and other pictorial representations. - place fractions and mixed numbers on a number line. - count up and down in given fractions. - find missing fractions in a sequence. - compare and order fractions where the denominators are multiples of the same number.

St Anne's C of E Primary School Curriculum Plans

equivalent fraction - equal in

value
mixed number - a whole number and a fraction combined into one number

numerator,

common numerator - when two or more fractions have the same numerator

denominator

common denominator - when two or more fractions have the same denominator
equal part
equal grouping
equal sharing
parts of a whole
half, two halves
one of two equal parts
quarter, two quarters, three quarters
one of four equal parts
one third, two thirds
one of three equal parts

Stem Sentences

The whole is divided into 4 equal parts and 1 of those parts is shaded.

The whole is divided into 12 equal parts and 3 of those parts are shaded.

To find $\frac{1}{5}$ of 15 , we divide 15 into 5 equal parts. 15 divided by 5 is equal to 3 , so $\frac{1}{5}$ of 15 is equal to 3 .

Three-fifths is equal to 3 one-fifths. To find 3 one-fifths of 40 , first find one-fifth of 40 by dividing by 5, and then multiply by 3 .
$\frac{1}{4}$ and $\frac{3}{12}$ are equivalent because 1 is the same portion of 4 as 3 is of 12 .
fractions, when one of the fractions has the common denominator in order to add or subtract fractions with different denominators.

- how partitioning into whole and parts is helpful when adding and subtracting mixed numbers.
- the concept of commutativity when multiplying fractions by whole numbers.
- add and subtract mixed numbers.
- use concrete and pictorial representations to multiply fractions by whole numbers.
- multiply mixed numbers by a whole number.
sixths, sevenths, eighths, tenths, hundredths,
thousandths...

St Anne's C of E Primary School Curriculum Plan

Subject: Maths	Year: 5

Unit: Decimals

Vocabulary	Knowledge	Understanding	Skills
	Children will know (that)	Children will understand (that)	Children will be able to
tenths hundredths thousandths decimal decimal fraction decimal point decimal place decimal equivalent	- what the decimal point means - tenths are worth more than hundredths and hundredths are worth more than thousandths. - 1 tenth $=1 / 10=0.1$ - there are ten 0.1 in 1 . - 1 is 10 times as much as 0.1 . - 1 hundredth $=1 / 100=0.01$ there are ten 0.01 in 0.1 . - 0.1 is 10 times as much as 0.01 - 1 thousandth $=1 / 1000=0.001$ - there are ten 0.001 in 0.01 , one hundred 0.001 in 0.1 and one thousand 0.001 in 1. - to look at the digit in the first decimal place when identifying which number is bigger - Stem Sentences	- the place value of each digit in a number with 2 decimal places - the relative size of place-value blocks to identify the different values of decimal numbers. - how to round a decimal to the nearest whole number. - how to round a decimal to the nearest tenth. - the process of exchanging whole numbers into tenths and tenths into hundredths to subtract decimals efficiently. - the links with number bonds to 10,100 and 1000 when adding decimals. - the importance of lining up the decimal point in order to ensure the correct place value when	- show decimal numbers using concrete representations. - rename tenths, hundredths and thousandths. - partition decimal numbers in different ways. - convert fractions into decimals and vice versa. - compare and order decimal numbers with up to three decimal places. - place decimal numbers on a number line. - use concrete representations to add and subtract decimal numbers. - use their understanding of column addition when adding and subtracting decimal numbers.

	1 is 10 times the size of one-tenth. One-tenth is 10 times the size of one-hundredth. 1 is 100 times the size of onehundredth. 10 tenths is equal to 1 one. 10 hundredths is equal to 1 tenth. 100 hundredths is equal to 1 one. 18 hundredths is equal to 10 hundredths and 8 more hundredths. 10 hundredths is equal to 1 tenth. So 18 hundredths is equal to 1 tenth and 8 more hundredths, which is 0.18 . Three hundredths is zero-point-zero-three.	adding and subtracting numbers with different decimal places. - the importance of zero as a place holder when adding and subtracting decimal numbers. - the effect of multiplying and dividing both integers and decimal numbers by multiples of 10 (Highlighting the misconception of adding a zero at the end of the original number.)	- lay out the column method accurately using decimal numbers.

St Anne's C of E Primary School Curriculum Plan

Subject: Maths	Year: 5		Term: Spring
发选	Unit: Percentages		
Vocabulary	Knowledge	Understanding	Skills
	Children will know (that)	Children will understand (that)	Children will be able to
Proportion in every, for every per cent, \% - out of one hundred. Derived from the Latin per centum, meaning "hundred" or "by the hundred". percentage	- per cent means out of a hundred. - the symbol \% - Stem Sentences 60 out of 100 is 60 per cent. 50% is equivalent to $1 / 2$. 25% is equivalent to $1 / 4$. 75% is equivalent to $3 / 4$.	- percentage is a measure of proportion. - 'per cent' relates to 'number of parts per hundred'. - the connection of percentages, fractions and decimals.	- recognise different representations which shows different parts of a hundred. - convert a fraction with a denominator of 100 into a percentage. - convert fractions with denominators that are factors of 100 into hundredths.

St Anne's C of E Primary School Curriculum Plan

Subject: Maths	Year: 5		Term: Spring
笼	Unit: S	atistics	
Vocabulary	Knowledge	Understanding	Skills
	Children will know (that)	Children will understand (that)	Children will be able to
Chart, bar chart, frequency table, Carroll diagram, Venn diagram Axis, axes Diagram Horizontal rows Vertical columns Continuous data	- to use a ruler to draw vertical and horizontal lines on graphs when reading points accurately. - the difference between rows and columns. - how to read a range of two-way tables	- how to estimate the value that is represented when reading between intervals on a line graph. - The difference in the type of data shown by a bar chart and a line graph. - when you change the scale of a graph, the accuracy also changes. - why the row and column headings are important when interpreting information in a table.	- make links to using number lines when reading hoizontal and vertical axes. - draw axes with different scales depending on the data that is being represented. - accurately plot points on their graphs. - solve comparison,sum and difference problems, using line graphs. - read tables to extract information.

St Anne's C of E Primary School Curriculum Plans

Line graph

St Anne's C of E Primary School Curriculum Plans

