## St Anne's C of E Primary School Curriculum Plan

## Subject: Maths

Year: 6
Term: Autumn

## Unit: Number and place value

| Vocabulary | Knowledge | Understanding | Skills |
| :---: | :---: | :---: | :---: |
|  | Children will know (that) | Children will understand (that) | Children will be able to |
| $\geq$ greater than or equal to <br> $\leq$ less than or equal to Roman numerals integer, positive, negative above/below zero, negative numbers formula - a mathematical rule written using symbols, usually as an equation describing a certain relationship between quantities. Divisibility - can be divided evenly without leaving a remainder. factorise - the reverse of expanding brackets. <br> prime factor - a prime number that divides exactly into another given number. <br> ascending/descending order digit total - the sum of all the digits in a number, e.g. the digit | - the value of each digit in a number up to 10000000 <br> - why it is helpful to round numbers, e.g. when estimating calculations or when working with very large numbers such as populations. <br> - where to put commas or separators when writing numbers greater than 10000 <br> - the inequality symbols < and > <br> Stem Sentences <br> One million is one thousand thousands. <br> The $\qquad$ represents $\qquad$ . <br> The value of the $\qquad$ is | - the importance of the placeholder in numbers <br> - which place value column to look at when rounding numbers <br> - which two numbers a given number lies between when rounding. <br> - The convention of rounding up if numbers are exactly halfway <br> - where negative numbers are used in real life contexts | - use negative numbers in context and calculate intervals across zero <br> - read, write, compare and order numbers up to 10000000 <br> - round any number to a required degree of accuracy |

St Anne's C of E Primary School Curriculum Plans

|  | a is between $\qquad$ and $\qquad$ <br> The previous multiple of one million is $\qquad$ . The next multiple of one million is $\qquad$ -. <br> $\boldsymbol{a}$ is nearest to $\qquad$ <br> $a$ is $\qquad$ when rounded to the nearest million. |  |  |
| :---: | :---: | :---: | :---: |

St Anne's C of E Primary School Curriculum Plan
Subject: Maths $\quad$ Year: $6 \quad$ Term: Autumn

## Unit: Addition and Subtraction (Four Operations)

| Vocabulary | Knowledge | Understanding | Skills |
| :---: | :---: | :---: | :---: |
|  | Children will know (that) | Children will understand (that) | Children will be able to |
| Addition <br> Add, more, and, make, sum, total, altogether <br> Double <br> Near double <br> Half, halve <br> One more, two more... ten more <br> Addends - the numbers added together to make the sum <br> Subtraction | - how to use place value to line up numbers with more than 4 digits accurately <br> - when an exchange is and isn't needed <br> - how to round numbers in order to estimate <br> - the most appropriate number to round to, e.g. the nearest 10, 100 or 1000 <br> - that addition can be done in any order but subtraction cannot <br> Stem Sentences | - '0' as a place holder | - use manipulatives and pictorial representations to demonstrate how to add and subtract <br> - add and subtract increasingly larger numbers mentally <br> - use formal written methods to add and subtract numbers greater than 4-digits <br> - use rounding to estimate and check answers <br> - solve addition and subtraction muti-step problems |

St Anne's C of E Primary School Curriculum Plans

Take away, minus, fewer, less, difference between

If one addend is increased by an amount and the other addend is decreased by the same amount, the sum remains the same.
One less, two less... ten less

Minuend - a quantity or number
from which another is to be subtracted

Subtrahend - a quantity or number to be subtracted from another.

Equals
Is equal to, is the same as

## Number bonds

Number pair
Number facts
Part, part, whole

## Partition

## Recombine

Missing number
Tens boundary / Hundreds boundary

Commutative - involving the condition that a group of quantities connected by operators gives the same result whatever the order of
the quantities involved, e.g. $a \times b=b \times a$.

Approximate - something is almost, but not completely, accurate or exact; roughly
Subject: Maths $\quad$ Year: 6 Term: Autumn

## Unit: Multiplication and division (Four Operations)

| Vocabulary | Knowledge | Understanding | Skills |
| :---: | :---: | :---: | :---: |
|  | Children will know (that) | Children will understand (that) | Children will be able to |
| Multiplication <br> Multiply <br> Multiplied by <br> Groups of <br> Times <br> Repeated addition <br> Multiple - The result of multiplying a number by an integer (not by a fraction). | - 'long multiplication' is an algorithm involving multiplication, then addition of partial products. <br> - remainders can be expressed as a whole number, a fraction or a decimal. <br> - how to use a systematic approach to find all the common factors of numbers. <br> - in mixed operation calculations, calculations are not carried out from left to right. <br> - the convention that when there is no operation sign written, this means multiply. <br> - when it is more efficient to carry out a mental strategy | - when multiplying two numbers that are multiples of 10,100 or 1000, you multiply the number of tens, hundreds or thousands and then adjust the product using place value. <br> e.g. $30 \times 40$ $\begin{aligned} & =3 \times 4 \times 10 \times 10 \\ & =3 \times 4 \times 100 \\ & =12 \times 100 \\ & =1,200 \end{aligned}$ <br> - the compensation property of multiplication, e.g. $5 \times 8=10 \times$ 4. | - use short multiplication to multiply numbers by a singledigit number. <br> - use long multiplication to multiply numbers by a two-digit number. <br> - multiply and divide by 10,100 , 1000 using concrete and pictorial representations and then by visualising place value charts. <br> - use the compensation property of multiplication to complete equations such as $0.3 \times 320=3 \times ?$, and to help them solve calculations such as $0.3 \times 320$. |

Common multiple - A multiple that is common to two or more numbers.

Factor - Numbers we can multiply together to get another number.

Common factor - When we find the factors of two or more numbers, and then find some factors are the same ("common"), then they are the "common factors".

Multiplicand - The number to be multiplied

Multiplier - The number by which the multiplicand is multiplied by

Product - The result of a multiplication

Multiplication:


Division
rather than a written computaional method.

## Stem Sentences

"If I multiply one factor by a number, I must divide the other factor by the same number for the product to stay the same."
"If I multiply one factor by a number, and keep the other factor the same, I must multiply the product by the same number."
"If one factor is made ten times the size, the product will be en times the size."

- two two-digit numbers can be multiplied by partitioning one of the factors, calculating partial products and then adding these partial products together. This can be extended to multiplying three-digit numbers by twodigit numbers.
- how portioning in different ways, other than according to place value, supports division of larger numbers.
- how using factor pairs can support dividing, e.g. $780 \div 20=780 \div 10 \div 2$
- each step in the 'long division' process
- how to change a remainder into a fraction or a decimal.
- how to interpret the remainder, e.g. $380 \div 12=31 \mathrm{r} 8$ could mean 31 full packs or 32 packs needed, depending on the context.
- how to break numbers down to their prime factors.
- how the order of operations affects the answer.
- list multiples of the divsor to help them solve disions more easily.
- find common factors of numbers.
- find whether or not a number up to 100 is prime.
- solve problems involving square and cubed numbes.
- use known facts from one calculation to determine the answer to another similar calculation,
e.g. $5,138 \div 14=367$
use this to to calculate $367 \times 15$

| Dividing |  |  |
| :--- | :--- | :--- | :--- |
| Divide |  |  |
| Divided by |  |  |
| Divided into |  |  |
| Grouping |  |  |
| Sharing |  |  |
| Shared equally |  |  |
| Left over |  |  |
| Remainder |  |  |
| Equal groups of |  |  |
| Dividend - The amount that you |  |  |
| want to divide up. |  |  |
| Divisor - The number we divide |  |  |
| by. |  |  |
| Quotient - The answer after we |  |  |
| divide one number by another. |  |  |
| dividend - divisor = quotient. |  |  |

St Anne's C of E Primary School Curriculum Plans
and still get the same answer when you add or when you multiply.

Distributive law - multiplying a number by a group of numbers added together is the same as doing each multiplication separately.

Prime number - A number that is only divisible by itself and 1 to leave a whole number.

## Composite number - A whole

 number that can be made by multiplying other whole numbers.Square number - the number we get after multiplying an integer (not a fraction) by itself.

Cubed number - The whole number is used three times, just like the sides of a cube.

Prime factor - A factor that is a prime number.

## St Anne's C of E Primary School Curriculum Plans

St Anne's C of E Primary School Curriculum Plan

## Subject: Maths

Year: 6
Term: Autumn and Spring

## Unit: Fractions

| Vocabulary | Knowledge | Understanding | Skills |
| :---: | :---: | :---: | :---: |
|  | Children will know (that) | Children will understand (that) | Children will be able to |
| fraction <br> unit fraction - a fraction with <br> a numerator of 1 <br> Non-unit fraction - a fraction <br> where the numerator is greater <br> than or equal to the <br> denominator (equal to or <br> greater than one whole) <br> Proper fraction - a fraction <br> where the numerator is smaller <br> than the denominator (less <br> than one whole) <br> improper fraction - a <br> fraction where the <br> numerator is larder than the <br> denominator <br> equivalent fraction - equal in <br> value <br> Simplify - to make a fraction <br> as simple as possible, e.g. 2/10 | - when calculating fractions, they need to simplify their answers. <br> - when a numerator or denominator are prime numbers, a fraction cannot be simplified any further. <br> - when comparing mixed numbers, they start by comparing the whole numbers. <br> - when the numerators are the same, the larger the denominator, the smaller the fraction. <br> - they have to make the denominators the same and change the numerators accordingly before addition or subtraction can be performed. | - how to use the highest common factor to simplify fractions. <br> - how to use their number sense to visualise the size of fractions before converting when comparing and ordering fractions. <br> - how to make the denominators the same in order to compare and order fractions. <br> - how to find the lowest common multiple to find common denominators. <br> - the link between dividing fractions by integers to multiplying by unit fractions. | - represent fractions using different pictorial representations. <br> - use a diagram to compare fractions. <br> - use $1 / 2$ to compare fractions. <br> - arrange fractions from smallest to largest and vice versa. <br> - Pupils are able to convert a mixed number into an improper fraction and vice versa. <br> - multiply simple pairs of fractions using diagrams. <br> - use concrete materials and pictorial representations to divide a fraction by a whole number. <br> - show division of fractions using pictures. <br> - check their division by using multiplication of fractions. |

dividing both top and bottom by 2 (and that is as far as we can go)
Simplest form - A fraction is in simplest form when the top and bottom cannot be any smaller, while still being whole numbers.
mixed number - a whole number and a fraction combined into one number numerator,
common numerator - when two or more fractions have the same numerator

## denominator

common denominator -
when two or more fractions have the same denominator
equal part
equal grouping
equal sharing
parts of a whole
half, two halves
one of two equal parts quarter, two quarters, three quarters
one of four equal parts one third, two thirds one of three equal parts sixths, sevenths, eighths, tenths, hundredths, thousandths...

- multiplying a number by a half is the same as dividing by 2.
- of $\qquad$ is the same as $-x$


## Stem Sentences

A fraction can be simplified when the numerator and denominator have a common factor other than 1.

To convert a fraction to its simplest form, divide both the numerator and the denominator by their highest common factor.

We need to compare the denominators of $\frac{1}{5}$ and $\frac{4}{15} \cdot 15$ is a multiple of 5 . We can use 15 as the common denominator. We need to express both fractions in fifteenths.

If one denominator is not a multiple of the other, we can multiply the two denominators to find a common denominator.

We need to compare the denominators of $\frac{1}{3}$ and $\frac{3}{8} .8$ is not a multiple of 3.24 is a multiple of both 3 and 8 . We can use 24 as the common denominator. We need to express both fractions in twentyfourths.

- use equivalent fractions to divide fractions where the numerator is not a multiple of the interger they are dividing by.
- invert the whole number into a fraction to use multiplication to solve.

|  | If the denominators are the same, <br> then the larger the numerator, <br> the larger the fraction. <br> If the numerators are the same, <br> then the larger the denominator, <br> the smaller the fraction. |  |  |
| :--- | :--- | :--- | :--- |

## St Anne's C of E Primary School Curriculum Plan

## Subject: Maths

Year: 6

## Term: Autumn

## Unit: Converting units

| Vocabulary | Knowledge | Understanding | Skills |
| :---: | :---: | :---: | :---: |
|  | Children will know (that) | Children will understand (that) | Children will be able to |
| length centimetre metre millimetre kilometre mile foot, feet inch, inches | - which operation to use when converting a smaller unit of measurement to a larger one and vice versa. <br> - the difference between capacity (the amount an object can contain) and volume (the amount actually in an object). <br> - the unit of measure that would be the most appropriate to measure different items. <br> - 5 miles is approximately equal to 8 km . <br> 1 foot is equal to 12 inches 1 pound is equal to 16 ounces 1 stone is equal to 14 pounds 1 gallon is equal to 8 pints | - the link between multiplying and dividing by 10,100 and 1,000 when converting between units of length, mass and capacity. <br> - the role of zero as a place holder when performing some calculations, as questions will involve varied numbers of decimal places. <br> - how to work out what each mark is worth on a scale. | - read, write and recognise all metric measures for length, mass and capacity. <br> - convert between metres,centimetres and millimetres; litres and millilitres; kilograms and grams; seconds, minutes and hours etc <br> - use a ruler to measure 2-D shapes. <br> - use decimals to express units of measure when converting. <br> - compare measurements in different units and determine 'greater than', 'less than' and 'equal to'. |

St Anne's C of E Primary School Curriculum Plans


